Главная страница » Интересное » Современная терминология 3D графики

Чат
Істота
Пані крижана зі стріхи
Ноги звісила для втіхи.
А як сонце припече -
Пані плаче і тече.
sergsum
fenix312, Баян - Серби вчера кидала в чат
fenix312
НосокСудьбы
Я БЭ ШЕСТОЙ МЕЖДУ ПРАПУСТИЛ БЫ huy
kartmanVS
Цитата: bylterer
парауже конкурс на пилараса всея SFW делать

я в замешательстве за кого голосовать lol
bylterer
А прис будит поебка в парижопыль
bylterer
Гусінь
россо леванто, lol lol
россо леванто
Гусінь, чемп не будет участвовать, он будет почетным членом жюри
россо леванто
bylterer, я буду гоосовать за тебя
Гусінь
bylterer, канеша нет, ты позорно продуешь чемпу с большим отрывом lol
bylterer
россо леванто, думаешь меня выбирут?
россо леванто
bylterer, ок, ловлю на слове
Гусінь
bylterer, lol я тоже хочу
bylterer
Гусінь, парауже конкурс на пилараса всея SFW делать,я буду балатироваться butthurt
Гусінь
bylterer, или пидарасы lol
bylterer
Видили две биксятины в конкурс добавились,лизбиянки наверное
bylterer
Pine from cellars, к своей?
bylterer
A`time
recourse
Гусінь
Pine from cellars, бля lol
Pine from cellars
bylterer, а к волосатой жопе как относишься ? Изволь по интересоваться troll
bylterer
Цитата: sergsum
з начьосом"
agree тожи люблю валасатую манду больше прыщавой шелушащейся troll
fenix312
Гусінь
Pine from cellars, ну еще бы butthurt
Pine from cellars
Гусінь, да (я там полистал историю - отвечаю да wink )
Гусінь
россо леванто, ohuenna
россо леванто
а спонсор этого дня — отказ от секса в ванной.

отказ от секса в ванной — в душе не ебу.
fenix312
Бухлишко, лобзиком awe2
Бухлишко
fenix312, и как теперь трупы расчленять?

Только зарегистрированные посетители могут писать в чате.
Опрос

Нужен ли конкурс сисек на SFW?

НЕТ! СРАМОТА!
ДА! ДАЙТЕ ДВЕ!
Мне мама на такое смотреть еще не разрешает.
Мне на такое смотреть уже поздно. Кхе-кхе!..
 
 
 
Также можете почитать
Статья призвана помочь разобраться, что же значат некоторые из этих слов, наиболее часто употребляемые в подобных случаях. В рамках этой статьи речь пойдет далеко не обо всех терминах 3D графики, а только о тех, которые получили большее распространение в последнее время в качестве отличительных особенностей и технологий, применяемых в игровых графических движках и в качестве наименований графических настроек современных игр.

Список терминов, описанных в статье:

Shader (Шейдер)
Vertex Shader (Вершинный Шейдер)
Pixel Shader (Пиксельный Шейдер)
Procedural Textures (Процедурные Текстуры)
Bump Mapping/Specular Bump Mapping
Displacement Mapping
Normal Mapping
Parallax Mapping/Offset Mapping
Postprocessing (Постобработка)
High Dynamic Range (HDR)
Tone Mapping
Bloom
Motion Blur
Depth Of Field (DOF)
Level Of Detail (LOD)
Global Illumination

Shader (Шейдер)


Шейдером в широком смысле называется программа для визуального определения поверхности объекта. Это может быть описание освещения, текстурирования, постобработки и т.п. Шейдеры выросли из работ Кука (Cook's shade trees) и Перлина (Perlin’s pixel stream language). Сейчас наиболее известны шейдеры RenderMan Shading Language. Программируемые шейдеры были впервые представлены в RenderMan компании Pixar, там определены несколько типов шейдеров: light source shaders, surface shaders, displacement shaders, volume shaders, imager shaders. Эти шейдеры чаще всего программно выполняются универсальными процессорами и не имеют полной аппаратной реализации. В дальнейшем, многие исследователи описывали похожие на RenderMan языки, но они уже были предназначены для аппаратного ускорения: система PixelFlow (Olano и Lastra), Quake Shader Language (применен id Software в графическом движке игры Quake III, который описывал многопроходный рендеринг), и другие. Peercy сотоварищи разработали технику для того, чтобы программы с циклами и условиями выполнять на традиционных аппаратных архитектурах при помощи нескольких проходов рендеринга. Шейдеры RenderMan разбивались на несколько проходов, которые комбинировались во фреймбуфере. Позднее появились языки, которые мы видим аппаратно ускоренными в DirectX и OpenGL. Так шейдеры были адаптированы для графических приложений реального времени.

Видеочипы раннего времени не были программируемы и исполняли только заранее запрограммированные действия (fixed-function), например, алгоритм освещения был жестко зафиксирован в железе, и нельзя было ничего изменить. Затем, компании-производители видеочипов постепенно ввели в свои чипы элементы программируемости, сначала это были очень слабые возможности (NV10, известный как NVIDIA GeForce 256, уже был способен на некоторые примитивные программы), которые не получили программной поддержки в Microsoft DirectX API, но со временем возможности постоянно расширялись. Следующий шаг был за и NV20 (GeForce 3) и NV2A (видеочип, примененный в игровой консоли Microsoft Xbox), которые стали первыми чипами с аппаратной поддержкой шейдеров DirectX API. Версия Shader Model 1.0/1.1, появившаяся в DirectX 8, была сильно ограничена, каждый шейдер (особенно это относится к пиксельным) мог быть сравнительно малой длины и сочетать весьма ограниченный набор команд. В дальнейшем, Shader Model 1 (SM1 для краткости) была улучшена с пиксельными шейдерами версии 1.4 (ATI R200), которые предлагали большую гибкость, но также имели слишком ограниченные возможности. Шейдеры того времени писались на так называемом assembly shader language, который близок к ассемблеру для универсальных процессоров. Его низкий уровень доставляет определенные сложности для понимания кода и программирования, особенно, когда код программы большой, ведь он далек от элегантности и структурированности современных языков программирования.

Версия Shader Model 2.0 (SM2), появившись в DirectX 9 (что было поддержано видеочипом ATI R300, ставшим первым GPU с поддержкой шейдерной модели версии 2.0), серьезно расширила возможности шейдеров реального времени, предложив более длинные и сложные шейдеры и заметно расширившийся набор команд. Была добавлена возможность расчетов с плавающей запятой в пиксельных шейдерах, что также стало важнейшим улучшением. DirectX 9, в лице возможностей SM2, также привнес и язык шейдеров высокого уровня - high-level shader language (HLSL), весьма похожий на язык Си. И эффективный компилятор, переводящий HLSL программы в низкоуровневый код, "понятный" для аппаратных средств. Причем, доступно несколько профилей, предназначенных для разных аппаратных архитектур. Теперь, разработчик может писать один код HLSL шейдера и компилировать его при помощи DirectX в оптимальную программу, для установленного у пользователя видеочипа. После этого выходили чипы от NVIDIA, NV30 и NV40, которые улучшили возможности аппаратных шейдеров еще на шаг, добавив еще более длинные шейдеры, возможности динамических переходов в вершинных и пиксельных шейдерах, возможность выборки текстур из вершинных шейдеров и др. С тех пор пока качественных изменений не было, они ожидаются ближе к концу 2006 года в DirectX 10...

В целом, шейдеры добавили к графическому конвейеру множество новых возможностей по трансформации и освещению вершин и индивидуальной обработке пикселей так, как этого хотят разработчики каждого конкретного приложения. И все-таки, возможности аппаратных шейдеров до сих пор не раскрыты в приложениях полностью, а ведь с увеличением их возможностей в каждом новом поколении "железа", мы скоро увидим уровень тех самых шейдеров RenderMan, которые когда-то казались недостижимыми для игровых видеоускорителей. Пока в шейдерных моделях реального времени, поддерживаемых на сегодняшний день аппаратными видеоускорителями, определено лишь два типа шейдеров: Vertex Shader и Pixel Shader (в определении DirectX 9 API). В будущем DirectX 10 к ним обещает добавиться еще и Geometry Shader.

Vertex Shader (Вершинный Шейдер)


Вершинные шейдеры - это программы, выполняемые видеочипами, которые производят математические операции с вершинами (vertex, из них состоят 3D объекты в играх), иначе говоря, они предоставляют возможность выполнять программируемые алгоритмы по изменению параметров вершин и их освещению (T&L - Transform & Lighting). Каждая вершина определяется несколькими переменными, например, положение вершины в 3D пространстве определяется координатами: x, y и z. Вершины также могут быть описаны характеристиками цвета, текстурными координатами и т.п. Вершинные шейдеры, в зависимости от алгоритмов, изменяют эти данные в процессе своей работы, например, вычисляя и записывая новые координаты и/или цвет. То есть, входные данные вершинного шейдера - данные об одной вершине геометрической модели, которая в данный момент обрабатывается. Обычно это координаты в пространстве, нормаль, компоненты цвета и текстурные координаты. Результирующие данные выполняемой программы служат входными для дальнейшей части конвейера, растеризатор делает линейную интерполяцию входных данных для поверхности треугольника и для каждого пикселя исполняет соответствующий пиксельный шейдер. Очень простой и грубый (но наглядный, надеюсь) пример: вершинный шейдер позволяет взять 3D объект сферы и вершинным шейдером сделать из него зеленый куб :).

До появления видеочипа NV20 у разработчиков было два пути, либо использовать собственные программы и алгоритмы, изменяющие параметры вершин, но тогда все расчеты делал бы CPU (software T&L), либо полагаться на фиксированные алгоритмы в видеочипах, с поддержкой аппаратной трансформации и освещения (hardware T&L). Первая же шейдерная модель DirectX означала большой шаг вперед от фиксированных функций по трансформации и освещению вершин к полностью программируемым алгоритмам. Стало возможным, например, выполнять алгоритм скининга полностью на видеочипах, а до этого единственной возможностью было их исполнение на универсальных центральных процессорах. Теперь, с сильно улучшенными со времен упомянутого чипа NVIDIA возможностями, с вершинами при помощи вершинных шейдеров можно делать уже очень многое (кроме их создания, разве что)...

Примеры того, как и где применяются вершинные шейдеры:
Скининг (skinning). Matrix pallete skinning для скелетной анимации персонажей с большим количеством "костей". Примеры вы видите практически во всех играх. Но приведу один скриншот из Call of Duty 2, над вершинами каждого из персонажей поработал алгоритм скининга. Причем, с шейдерами версии 3.0 сделать скининг стало заметно проще, для шейдеров версии 1.1 нужно было писать несколько шейдеров для каждого вида скининга (с определенным количеством "костей").
Современная терминология 3D графики

Деформация объектов. Как самый явный и эффектный пример - создание реалистичных волн в динамике. Примеры подобных решений наблюдаются в играх F.E.A.R. и Pacific Fighters, причем в последнем сделана, пожалуй, самая реалистичная вода реального времени, применяются вершинные шейдеры 3.0 и доступ к текстурам из них, настоящий Displacement Mapping в дополнение к Bump Mapping:
Современная терминология 3D графики

Современная терминология 3D графики

Конечно, похожий эффект волн в динамике, как в F.E.A.R., может быть запрограммирован и на пиксельном уровне (Morrowind), но в данном случае речь об изменении реальной геометрии, что всегда реалистичнее выглядит.
Анимация объектов. Например, травы и деревьев в одном из первых применений - 3DMark 2001 SE, алгоритм анимации был значительно улучшен в следующем 3DMark 03:
Современная терминология 3D графики

Toon shading/Cel shading. Используется в некоторых играх для создания специального эффекта "мультяшного" изображения:
Современная терминология 3D графики

Имитация ткани (Cloth Simulation) - для имитации поведения подобных ткани материалов, которой очень не хватает в большинстве игр. Наиболее просто понять, о чем речь, по такой картинке:
Современная терминология 3D графики

Pixel Shader (Пиксельный Шейдер)


Пиксельные шейдеры - это программы, выполняемые видеочипом во время растеризации для каждого пикселя изображения, они производят выборку из текстур и/или математические операции над цветом и значением глубины (Z-buffer) пикселей. Все инструкции пиксельного шейдера выполняются попиксельно, после того, как операции с трансформированием и освещением геометрии завершены. Пиксельный шейдер в итоге своей работы выдает конечное значение цвета пикселя и Z-значение для последующего этапа графического конвейера, блендинга. Наиболее простой пример пиксельного шейдера, который можно привести: банальное мультитекстурирование, просто смешение двух текстур (diffuse и lightmap, например) и наложение результата вычисления на пиксель.

До появления видеочипов с аппаратной поддержкой пиксельных шейдеров, у разработчиков были лишь возможности по обычному мультитекстурированию и альфа-блендингу, что существенно ограничивало возможности по многим визуальным эффектам и не позволяло делать многое из того, что сейчас доступно. И если с геометрией еще что-то можно было делать программно, то с пикселями - нет. Ранние версии DirectX (до 7.0 включительно) всегда выполняли все расчеты повершинно и предлагали крайне ограниченную функциональность по попиксельному освещению (вспоминаем EMBM - environment bump mapping и DOT3) в последних версиях. Пиксельные шейдеры сделали возможным освещение любых поверхностей попиксельно, используя запрограммированные разработчиками материалы. Появившиеся в NV20 пиксельные шейдеры версии 1.1 (в понимании DirectX) уже могли не только делать мультитекстурирование, но и многое другое, хотя большинство игр, использующих SM1, просто использовали традиционное мультитекстурирование на большинстве поверхностей, выполняя более сложные пиксельные шейдеры лишь на части поверхностей, для создания разнообразных спецэффектов (все знают, что вода до сих пор является наиболее частым примером использования пиксельных шейдеров в играх). Сейчас, после появления SM3 и поддерживающих их видеочипов, возможности пиксельных шейдеров доросли уже до того, чтобы с их помощью делать даже трассировку лучей (raytracing), пусть пока с некоторыми ограничениями.

Примеры применения пиксельных шейдеров:
Мультитекстурирование. Несколько слоев текстур (colormap, detailmap, lightmap и т.д.). Используется вообще во всех играх.
Современная терминология 3D графики

Попиксельное освещение. Bump mapping . Normal mapping . С недавних пор применяется практически везде.
Современная терминология 3D графики

Современная терминология 3D графики

Постобработка кадра. Все эти эффекты Bloom , Depth of Field и Motion Blur ...
Современная терминология 3D графики

Процедурные текстуры , такие, как текстура дерева или мрамора. Примеры:
Современная терминология 3D графики

Современная терминология 3D графики

Procedural Textures (Процедурные Текстуры)

Процедурные текстуры - это текстуры, описываемые математическими формулами. Такие текстуры не занимают в видеопамяти места, они создаются пиксельным шейдером "на лету", каждый их элемент (тексель) получается в результате исполнения соответствующих команд шейдера. Наиболее часто встречающиеся процедурные текстуры: разные виды шума (например, fractal noise), дерево, вода, лава, дым, мрамор, огонь и т.п., то есть те, которые сравнительно просто можно описать математически. Процедурные текстуры также позволяют использовать анимированные текстуры при помощи всего лишь небольшой модификации математических формул. Например, облака, сделанные подобным образом, выглядят вполне прилично и в динамике и в статике.
Современная терминология 3D графики

Преимущества процедурных текстур также включают в себя неограниченный уровень детализации каждой текстуры, пикселизации просто не будет, текстура как бы всегда генерируется под необходимый для ее отображения размер. Большой интерес представляет и анимированный Normal Mapping , с его помощью можно сделать волны на воде, без применения предпросчитанных анимированных текстур. Еще один плюс таких текстур в том, что чем больше их применяется в продукте, тем меньше работы для художников (правда, больше для программистов) над созданием обычных текстур.

К сожалению, процедурные текстуры не получили пока должного применения в играх, в реальных приложениях до сих пор зачастую проще загрузить обычную текстуру, объемы видеопамяти растут не по дням, а по часам, в самых современных ускорителях ставят уже 512 мегабайт выделенной видеопамяти, которую надо чем-то занимать. Более того, до сих пор чаще делают наоборот - для ускорения математики в пиксельных шейдерах используют lookup tables (LUT) - специальные текстуры, содержащие заранее просчитанные значения, получаемые в результате вычислений. Чтобы не считать для каждого пикселя несколько математических команд, просто читают заранее вычисленные значения из текстуры. Но чем дальше, тем сильнее акцент должен смещаться именно в сторону математических вычислений, взять те же видеочипы ATI нового поколения: RV530 и R580, у которых на каждые 4 и 16 текстурных блоков приходится 12 и 48 пиксельных процессоров, соответственно. Тем более, если речь о 3D текстурах, ведь если двухмерные текстуры без проблем можно разместить в локальной памяти ускорителя, то 3D текстуры требуют ее намного больше.

Примеры процедурных текстур:
Современная терминология 3D графики

Bump Mapping/Specular Bump Mapping


Бампмаппинг - это техника симуляции неровностей (или моделирования микрорельефа, как больше нравится) на плоской поверхности без больших вычислительных затрат и изменения геометрии. Для каждого пикселя поверхности выполняется вычисление освещения, исходя из значений в специальной карте высот, называемой bumpmap. Это обычно 8-битная черно-белая текстура и значения цвета текстуры не накладываются как обычные текстуры, а используются для описания неровности поверхности. Цвет каждого текселя определяет высоту соответствующей точки рельефа, большие значения означают большую высоту над исходной поверхностью, а меньшие, соответственно, меньшую. Или наоборот.

Степень освещенности точки зависит от угла падения лучей света. Чем меньше угол между нормалью и лучом света, тем больше освещенность точки поверхности. То есть, если взять ровную поверхность, то нормали в каждой ее точке будут одинаковыми и освещенность также будет одинаковой. А если поверхность неровная (собственно, практически все поверхности в реальности), то нормали в каждой точке будут разными. И освещенность разная, в одной точке она будет больше, в другой - меньше. Отсюда и принцип бампмаппинга - для моделирования неровностей для разных точек полигона задаются нормали к поверхности, которые учитываются при вычислении попиксельного освещения. В результате получается более натуральное изображение поверхности, бампмаппинг дает поверхности большую детализацию, такую, как неровности на кирпиче, поры на коже и т.п., без увеличения геометрической сложности модели, так как расчеты ведутся на пиксельном уровне. Причем, при изменении положения источника света освещение этих неровностей правильно изменяется.

Конечно, вершинное освещение намного проще вычислительно, но слишком нереалистично оно выглядит, особенно при сравнительно малополигональной геометрии, интерполяция цвета для каждого пикселя не может воспроизвести значения, большие, чем рассчитанные значения для вершин. То есть, пиксели в середине треугольника не могут быть ярче, чем фрагменты возле вершины. Следовательно, области с резким изменением освещения, такие как блики и источники света, очень близко расположенные к поверхности, будут физически неправильно отображаться, и особенно это будет заметно в динамике. Конечно, частично проблема решаема увеличением геометрической сложности модели, ее разбиением на большее количество вершин и треугольников, но оптимальным вариантом будет попиксельное освещение.

Для продолжения необходимо напомнить о составляющих освещения. Цвет точки поверхности рассчитывается как сумма ambient, diffuse и specular составляющих от всех источников света в сцене (в идеале от всех, зачастую многими пренебрегают). Вклад в это значение от каждого источника света зависит от расстояния между источником света и точкой на поверхности.

Составляющие освещения:
Современная терминология 3D графики

А теперь добавим к этому бампмаппинг:
Современная терминология 3D графики

Равномерная (ambient) составляющая освещения - аппроксимация глобального освещения , "начальное" освещение для каждой точки сцены, при котором все точки освещаются одинаково и освещенность не зависит от других факторов. Диффузная (diffuse) составляющая освещения зависит от положения источника освещения и от нормали поверхности. Эта составляющая освещения разная для каждой вершины объекта, что придает им объем. Свет уже не заполняет поверхность одинаковым оттенком. Бликовая (specular) составляющая освещения проявляется в бликах отражения лучей света от поверхности. Для ее расчета, помимо вектора положения источника света и нормали, используются еще два вектора: вектор направления взгляда и вектор отражения. Specular модель освещения впервые предложил Фонг (Phong Bui-Tong). Эти блики существенно увеличивают реалистичность изображения, ведь редкие реальные поверхности не отражают свет, поэтому specular составляющая очень важна. Особенно в движении, потому что по бликам сразу видно изменение положения камеры или самого объекта. В дальнейшем, исследователи придумывали иные способы вычисления этой составляющей, более сложные (Blinn, Cook-Torrance, Ward), учитывающие распределение энергии света, его поглощение материалами и рассеивания в виде диффузной составляющей.

Итак, Specular Bump Mapping получается таким образом:
Современная терминология 3D графики

И посмотрим то же самое на примере игры, Call of Duty 2:
Современная терминология 3D графики

Первый фрагмент картинки - рендеринг без бампмаппинга (нормалмаппинга ) вообще, второй (справа-сверху) - бампмаппинг без бликовой составляющей, третий - с бликовой составляющей нормальной величины, какая используется в игре, и последний, справа-снизу - с максимально возможным значением specular составляющей.

Что касается первого аппаратного применения, то некоторые виды бампмаппинга (Emboss Bump Mapping) стали использовать еще во времена видеокарт на базе чипов NVIDIA Riva TNT, однако техники того времени были крайне примитивны и широкого применения не получили. Следующим известным типом стал Environment Mapped Bump Mapping (EMBM), но аппаратной его поддержкой в DirectX в то время обладали только видеокарты Matrox, и опять применение было сильно ограничено. Затем появился Dot3 Bump Mapping и видеочипы того времени (GeForce 256 и GeForce 2) требовали три прохода для того, чтобы полностью выполнить такой математический алгоритм, так как они ограничены двумя одновременно используемыми текстурами. Начиная с NV20 (GeForce3), появилась возможность делать то же самое за один проход при помощи пиксельных шейдеров. Дальше - больше. Стали применять более эффективные техники, такие как Normal Mapping .

Примеры применения бампмаппинга в играх:
Современная терминология 3D графики

Displacement Mapping

Наложение карт смещения (Displacement Mapping) является методом добавления деталей к трехмерным объектам. В отличие от бампмаппинга и других попиксельных методов, когда картами высот правильно моделируется только освещенность точки, но не изменяется ее положение в пространстве, что дает лишь иллюзию увеличения сложности поверхности, карты смещения позволяют получить настоящие сложные 3D объекты из вершин и полигонов, без ограничений, присущих попиксельным методам. Этот метод изменяет положение вершин треугольников, сдвигая их по нормали на величину, исходя из значений в картах смещения. Карта смещения (displacement map) - это обычно черно-белая текстура, и значения в ней используются для определения высоты каждой точки поверхности объекта (значения могут храниться как 8-битные или 16-битные числа), схоже с bumpmap. Часто карты смещения используются (в этом случае они называются и картами высот) для создания земной поверхности с холмами и впадинами. Так как рельеф местности описывается двухмерной картой смещения, его относительно легко деформировать при необходимости, так как это потребует всего лишь модификации карты смещения и рендеринга на ее основе поверхности в следующем кадре.

Наглядно создание ландшафта при помощи наложения карт смещения представлено на картинке. Исходными были 4 вершины и 2 полигона, в итоге получился полноценный кусок ландшафта.
Современная терминология 3D графики

Большим преимуществом наложения карт смещения является не просто возможность добавления деталей к поверхности, а практически полное создание объекта. Берется низкополигональный объект, разбивается (тесселируется) на большее количество вершин и полигонов. Вершины, полученные в результате тесселяции, затем смещаются по нормали, исходя из значения, прочитанного в карте смещения. Получаем в итоге сложный 3D объект из простого, используя соответствующую displacement карту:
Современная терминология 3D графики

Количество треугольников, созданных при тесселяции, должно быть достаточно большим для того, чтобы передать все детали, задаваемые картой смещений. Иногда дополнительные треугольники создаются автоматически, используя N-патчи или другие методы. Карты смещения лучше использовать совместно с бампмаппингом для создания мелких деталей, где достаточно правильного попиксельного освещения.

Наложение карт смещения впервые получило поддержку в DirectX 9.0. Это была первая версия данного API, которая поддержала технику Displacement Mapping. В DX9 поддерживается два типа наложения карт смещения, filtered и presampled. Первый метод был поддержан забытым уже видеочипом MATROX Parhelia, а второй - ATI RADEON 9700. Filtered метод отличается тем, что позволяет использовать мип-уровни для карт смещения и применять для них трилинейную фильтрацию. В таком методе мип-уровень карты смещения выбирается для каждой вершины на основе расстояния от вершины до камеры, то есть уровень детализации выбирается автоматически. Таким образом достигается почти равномерное разбиение сцены, когда треугольники имеют примерно одинаковый размер.

Наложение карт смещения можно по существу считать методом сжатия геометрии, использование карт смещения снижает объем памяти, требуемый для определенной детализации 3D модели. Громоздкие геометрические данные замещаются простыми двухмерными текстурами смещения, обычно 8-битными или 16-битными. Это снижает требования к объему памяти и пропускной способности, необходимой для доставки геометрических данных к видеочипу, а эти ограничения являются одними из главных для сегодняшних систем. Или же, при равных требованиях к пропускной способности и объему памяти, наложение карт смещения позволяет использовать намного более сложные геометрически 3D модели. Применение моделей значительно меньшей сложности, когда вместо десятков или сотен тысяч треугольников используют единицы тысяч, позволяет еще и ускорить их анимацию. Или же улучшить, применив более сложные комплексные алгоритмы и техники, вроде имитации тканей (cloth simulation).

Другое преимущество в том, что применение карт смещения превращает сложные полигональные трехмерные сетки в несколько двухмерных текстур, которые проще поддаются обработке. Например, для организации Level of Detail можно использовать обычный мип-маппинг для наложения карт смещения. Также, вместо сравнительно сложных алгоритмов сжатия трехмерных сеток можно применять привычные методы сжатия текстур, даже JPEG-подобные. А для процедурного создания 3D объектов можно использовать обычные алгоритмы для двухмерных текстур.

Но у карт смещения есть и некоторые ограничения, они не могут быть применены во всех ситуациях. Например, гладкие объекты, не содержащие большого количества тонких деталей, будут лучше представлены в виде стандартных полигональных сеток или иных поверхностей более высокого уровня, вроде кривых Безье. С другой стороны, очень сложные модели, такие как деревья или растения, также нелегко представить картами смещения. Есть также проблемы удобства их применения, это почти всегда требует специализированных утилит, ведь очень сложно напрямую создавать карты смещения (если речь не идет о простых объектах, вроде ландшафта). Многие проблемы и ограничения, присущие картам смещения, совпадают с таковыми у наложения карт нормалей , поскольку эти два метода по сути - два разных представления похожей идеи.

В качестве примера из реальных игр приведу игру, в которой используется выборка текстур из вершинного шейдера, возможность, появившаяся в видеочипах NVIDIA NV40 и шейдерной модели 3.0. Вершинное текстурирование можно применить для полностью выполняемого видеочипом простого метода наложения карт смещения, без тесселяции (разбиения на большее количество треугольников). Применение такому алгоритму ограничено, они имеют смысл, только если карты будут динамическими, то есть, будут изменяться в процессе. Например, это рендеринг больших водных поверхностей, что и сделано в игре Pacific Fighters:
Современная терминология 3D графики

Современная терминология 3D графики

Normal Mapping


Нормалмаппинг - это улучшенная разновидность техники бампмаппинга, описанной ранее, расширенная ее версия. Бампмаппинг был разработан Блинном (Blinn) еще в 1978 году, нормали поверхности при этом методе наложения рельефа изменяются на основе информации из карт высот (bump map). В то время как бампмаппинг всего лишь изменяет существующую нормаль для точек поверхности, нормалмаппинг полностью заменяет нормали при помощи выборки их значений из специально подготовленной карты нормалей (normal map). Эти карты обычно являются текстурами с сохраненными в них заранее просчитанными значениями нормалей, представленными в виде компонент цвета RGB (впрочем, есть и специальные форматы для карт нормалей, в том числе со сжатием), в отличие от 8-битных черно-белых карт высот в бампмаппинге.

В общем, как и бампмаппинг, это тоже "дешевый" метод для добавления детализации к моделям сравнительно низкой геометрической сложности, без использования большего количества реальной геометрии, только более продвинутый. Одно из наиболее интересных применений техники - существенное увеличение детализации низкополигональных моделей при помощи карт нормалей, полученных обработкой такой же модели высокой геометрической сложности. Карты нормалей содержат более подробное описание поверхности, по сравнению с бампмаппингом и позволяют представить более сложные формы. Идеи по получению информации из высокодетализированных объектов были озвучены в середине 90-х годов прошлого века, но тогда речь шла об использовании для Displacement Mapping . Позднее, в 1998 году, были представлены идеи о перенесении деталей в виде карт нормалей от высокополигональных моделей в низкополигональные.
Современная терминология 3D графики

Карты нормалей предоставляют более эффективный способ для хранения подробных данных о поверхностях, по сравнению с простым использованием большого количества полигонов. Единственное серьезное их ограничение в том, что они не очень хорошо подходят для крупных деталей, ведь нормалмаппинг на самом деле не добавляет полигонов и не изменяет форму объекта, он только создает видимость этого. Это всего лишь симуляция деталей, на основе расчета освещения на пиксельном уровне. На крайних полигонах объекта и больших углах наклона поверхности это очень хорошо заметно. Поэтому наиболее разумный способ применения нормалмаппинга состоит в том, чтобы сделать низкополигональную модель достаточно детализированной для того, чтобы сохранялась основная форма объекта, и использовать карты нормалей для добавления более мелких деталей.

Карты нормалей обычно создаются на основе двух версий модели, низко- и высокополигональной. Низкополигональная модель состоит из минимума геометрии, основных форм объекта, а высокополигональная содержит все необходимое для максимальной детализации. Затем, при помощи специальных утилит они сравниваются друг с другом, разница рассчитывается и сохраняется в текстуре, называемой картой нормалей. При ее создании дополнительно можно использовать и bump map для очень мелких деталей, которые даже в высокополигональной модели не смоделировать (поры кожи, другие мелкие углубления).

Карты нормалей изначально были представлены в виде обычных RGB текстур, где компоненты цвета R, G и B (от 0 до 1) интерпретируются как координаты X, Y и Z. Каждый тексель в карте нормалей представлен как нормаль точки поверхности. Карты нормалей могут быть двух видов: с координатами в model space (общей системе координат) или tangent space (термин на русском - "касательное пространство", локальная система координат треугольника). Чаще применяется второй вариант. Когда карты нормалей представлены в model space, то они должны иметь три компоненты, так как могут быть представлены все направления, а когда в локальной системе координат tangent space, то можно обойтись двумя компонентами, а третью получить в пиксельном шейдере.
Современная терминология 3D графики

Современные приложения реального времени до сих пор сильно проигрывают пререндеренной анимации по качеству изображения, это касается, прежде всего, качества освещения и геометрической сложности сцен. Количество вершин и треугольников, рассчитываемых в реальном времени, ограничено. Поэтому очень важны методы, позволяющие снизить количество геометрии. До нормалмаппинга были разработаны несколько таких методов, но низкополигональные модели даже с бампмаппингом получаются заметно хуже более сложных моделей. Нормалмаппинг хоть и имеет несколько недостатков (самый явный - так как модель остается низкополигональной, это легко видно по ее угловатым границам), но итоговое качество рендеринга заметно улучшается, оставляя геометрическую сложность моделей низкой. В последнее время хорошо видно увеличение популярности данной методики и использование ее во всех популярных игровых движках. "Виной" этому - комбинация отличного результирующего качества и одновременное снижение требований к геометрической сложности моделей. Техника нормалмаппинга сейчас применяется почти повсеместно, все новые игры используют ее максимально широко. Вот лишь краткий список известных ПК игр с использованием нормалмаппинга: Far Cry, Doom 3, Half-Life 2, Call of Duty 2, F.E.A.R., Quake 4. Все они выглядят намного лучше, чем игры прошлого, в том числе из-за применения карт нормалей.
Современная терминология 3D графики

Есть лишь одно негативное последствие применения этой техники - увеличение объемов текстур. Ведь карта нормалей сильно влияет на то, как будет выглядеть объект, и она должна быть достаточно большого разрешения, поэтому требования к видеопамяти и ее пропускной способности удваиваются (в случае несжатых карт нормалей). Но сейчас уже выпускаются видеокарты с 512 мегабайтами локальной памяти, пропускная способность ее постоянно растет, разработаны методы сжатия специально для карт нормалей, поэтому эти небольшие ограничения не слишком важны, на самом деле. Гораздо больше эффект, который дает нормалмаппинг, позволяя использовать сравнительно низкополигональные модели, снижая требования к памяти для хранения геометрических данных, улучшая производительность и давая весьма достойный визуальный результат.

Parallax Mapping/Offset Mapping


После нормалмаппинга, разработанного еще в 1984 году, последовало рельефное текстурирование (Relief Texture Mapping), представленное Olivera и Bishop в 1999 году. Это метод для наложения текстур, основанный на информации о глубине. Метод не нашел применения в играх, но его идея способствовала продолжению работ над параллаксмаппингом и его улучшении. Kaneko в 2001 представил parallax mapping, который стал первым эффективным методом для попиксельного отображения эффекта параллакса. В 2004 году Welsh продемонстрировал применение параллаксмаппинга на программируемых видеочипах.

У этого метода, пожалуй, больше всего различных названий. Перечислю те, которые встречал: Parallax Mapping, Offset Mapping, Virtual Displacement Mapping, Per-Pixel Displacement Mapping. В статье для краткости применяется первое название.
Параллаксмаппинг - это еще одна альтернатива техникам бампмаппинга и нормалмаппинга, которая дает еще большее представление о деталях поверхности, более натуралистичное отображение 3D поверхностей, также без слишком больших потерь производительности. Это техника похожа одновременно на наложение карт смещения и нормалмаппинг, это нечто среднее между ними. Метод тоже предназначен для отображения большего количества деталей поверхности, чем есть в исходной геометрической модели. Он похож на нормалмаппинг, но отличие в том, что метод искажает наложение текстуры, изменяя текстурные координаты так, что когда вы смотрите на поверхность под разными углами, она выглядит выпуклой, хотя в реальности поверхность плоская и не изменяется. Иными словами, Parallax Mapping - это техника аппроксимации эффекта смещения точек поверхности в зависимости от изменения точки зрения.

Техника сдвигает текстурные координаты (поэтому технику иногда называют offset mapping) так, чтобы поверхность выглядела более объемной. Идея метода состоит в том, чтобы возвращать текстурные координаты той точки, где видовой вектор пересекает поверхность. Это требует просчета лучей (рейтрейсинг) для карты высот, но если она не имеет слишком сильно изменяющихся значений ("гладкая" или "плавная"), то можно обойтись аппроксимацией. Такой метод хорош для поверхностей с плавно изменяющимися высотами, без просчета пересечений и больших значений смещения. Подобный простой алгоритм отличается от нормалмаппинга всего тремя инструкциями пиксельного шейдера: две математические инструкции и одна дополнительная выборка из текстуры. После того, как вычислена новая текстурная координата, она используется дальше для чтения других текстурных слоев: базовой текстуры, карты нормалей и т.п. Такой метод параллаксмаппинга на современных видеочипах почти также эффективен, как обычное наложение текстур, а его результатом является более реалистичной отображение поверхности, по сравнению с простым нормалмаппингом.
Современная терминология 3D графики

Но использование обычного параллаксмаппинга ограничено картами высот с небольшой разницей значений. "Крутые" неровности обрабатываются алгоритмом некорректно, появляются различные артефакты, "плавание" текстур и пр. Было разработано несколько модифицированных методов для улучшения техники параллаксмаппинга. Несколько исследователей (Yerex, Donnelly, Tatarchuk, Policarpo) описали новые методы, улучшающие начальный алгоритм. Почти все идеи основаны на трассировке лучей в пиксельном шейдере для определения пересечений деталей поверхностей друг другом. Модифицированные методики получили несколько разных названий: Parallax Mapping with Occlusion, Parallax Mapping with Distance Functions, Parallax Occlusion Mapping. Для краткости будем их все называть Parallax Occlusion Mapping.

Методы Parallax Occlusion Mapping включают еще и трассировку лучей для определения высот и учета видимости текселей. Ведь при взгляде под углом к поверхности тексели загораживают друг друга, и, учитывая это, можно добавить к эффекту параллакса больше глубины. Получаемое изображение становится реалистичнее и такие улучшенные методы можно применять для более глубокого рельефа, он отлично подходит для изображения кирпичных и каменных стен, мостовой и пр. Нужно особенно отметить, что главное отличие Parallax Mapping от Displacement Mapping в том, что расчеты все попиксельные, а не повершинные. Именно поэтому метод имеет названия вроде Virtual Displacement Mapping и Per-Pixel Displacement Mapping. Посмотрите на картинку, трудно поверить, но камни мостовой тут - всего лишь попиксельный эффект:
Современная терминология 3D графики

Метод позволяет эффективно отображать детализированные поверхности без миллионов вершин и треугольников, которые потребовались бы при реализации этого геометрией. При этом сохраняется высокая детализация (кроме силуэтов/граней) и значительно упрощаются расчеты анимации. Такая техника дешевле, чем использование реальной геометрии, используется значительно меньшее количество полигонов, особенно в случаях с очень мелкими деталями. Применений алгоритму множество, а лучше всего он подходит для камней, кирпичей и подобного.

Также, дополнительное преимущество в том, что карты высот могут динамически изменяться (поверхность воды с волнами, дырки от пуль в стенах и многое другое). В недостатках метода - отсутствие геометрически правильных силуэтов (краев объекта), ведь алгоритм попиксельный и не является настоящим displacement mapping. Зато он экономит производительность в виде снижения нагрузки на трансформацию, освещение и анимацию геометрии. Экономит видеопамять, необходимую для хранения больших объемов геометрических данных. В плюсах у техники и относительно простая интеграция в существующие приложения и использование в процессе работы привычных утилит, применяемых для нормалмаппинга.

Техника уже применяется в реальных играх последнего времени. Пока что обходятся простым параллаксмаппингом на основе статических карт высот, без трассировки лучей и расчета пересечений. Вот примеры применения параллаксмаппинга в играх:
Современная терминология 3D графики


Postprocessing (Постобработка)


В широком смысле, постобработка - это все то, что происходит после основных действий по построению изображения. Иначе говоря, постобработка - это любые изменения изображения после его рендеринга. Постобработка представляет собой набор средств для создания специальных визуальных эффектов, и их создание производится уже после того, как основная работа по визуализации сцены выполнена, то есть, при создании эффектов постобработки используется готовое растровое изображение.

Простой пример из фотографии: вы сфотографировали красивое озеро с зеленью при ясной погоде. Небо получается очень ярким, а деревья - слишком темными. Вы загружаете фотографию в графический редактор и начинаете изменять яркость, контраст и другие параметры для участков изображения или для всей картинки. Но вы уже не имеете возможности изменить настройки фотоаппарата, вы делаете обработку готового изображения. Это и есть постобработка. Или другой пример: выделение заднего плана в портретной фотографии и применение blur фильтра к этой области для эффекта depth of field с большей глубиной. То есть, когда вы изменяете или подправляете кадр в графическом редакторе, вы и делаете постобработку. То же самое может делаться и в игре, в реальном времени.

Существует множество разных возможностей по обработке изображения после его рендеринга. Все видели, наверное, в графических редакторах множество так называемых графических фильтров. Это как раз то, что называется постфильтрами: blur, edge detection, sharpen, noise, smooth, emboss и др. В применении к 3D рендерингу в реальном времени это делается так - вся сцена рендерится в специальную область, render target, и после основного рендеринга это изображение дополнительно обрабатывается при помощи пиксельных шейдеров и только потом выводится на экран. Из эффектов постобработки в играх чаще всего используют Bloom , Motion Blur , Depth Of Field . Существует и множество других постэффектов: noise, flare, distortion, sepia и др.

Вот парочка ярких примеров постобработки в игровых приложениях:
Современная терминология 3D графики


High Dynamic Range (HDR)


High Dynamic Range (HDR) в применении к 3D графике - это рендеринг в широком динамическом диапазоне. Суть HDR заключается в описании интенсивности и цвета реальными физическими величинами. Привычной моделью описания изображения является RGB, когда все цвета представлены в виде суммы основных цветов: красного, зеленого и синего, с разной интенсивностью в виде возможных целочисленных значений от 0 до 255 для каждого, закодированных восемью битами на цвет. Отношение максимальной интенсивности к минимальной, доступной для отображения конкретной моделью или устройством, называется динамическим диапазоном. Так, динамический диапазон модели RGB составляет 256:1 или 100:1 cd/m2 (два порядка). Эта модель описания цвета и интенсивности общепринято называется Low Dynamic Range (LDR).

Возможных значений LDR для всех случаев явно недостаточно, человек способен видеть гораздо больший диапазон, особенно при малой интенсивности света, а модель RGB слишком ограничена в таких случаях (да и при больших интенсивностях тоже). Динамический диапазон зрения человека от 10-6 до 108 cd/m2, то есть 100000000000000:1 (14 порядков). Одновременно весь диапазон мы видеть не можем, но диапазон, видимый глазом в каждый момент времени, примерно равен 10000:1 (четырем порядкам). Зрение приспосабливается к значениям из другой части диапазона освещенности постепенно, при помощи так называемой адаптации, которую легко описать ситуацией с выключением света в комнате в темное время суток - сначала глаза видят очень мало, но со временем адаптируются к изменившимся условиям освещения и видят уже намного больше. То же самое случается и при обратной смене темной среды на светлую.

Итак, динамического диапазона модели описания RGB недостаточно для представления изображений, которые человек способен видеть в реальности, эта модель значительно уменьшает возможные значения интенсивности света в верхней и нижней части диапазона. Самый распространенный пример, приводимый в материалах по HDR, - изображение затемненного помещения с окном на яркую улицу в солнечный день. С RGB моделью можно получить или нормальное отображение того, что находится за окном, или только того, что внутри помещения. Значения больше 100 cd/m 2 в LDR вообще обрезаются, это является причиной тому, что в 3D рендеринге трудно правильно отображать яркие источники света, направленные прямо в камеру.
Современная терминология 3D графики

Сами устройства отображения данных пока что серьезно улучшить нельзя, а отказаться от LDR при расчетах имеет смысл, можно использовать реальные физические величины интенсивности и цвета (или линейно пропорциональные), а на монитор выводить максимум того, что он сможет. Суть представления HDR в использовании значений интенсивности и цвета в реальных физических величинах или линейно пропорциональных и в том, чтобы использовать не целые числа, а числа с плавающей точкой с большой точностью (например, 16 или 32 бита). Это снимет ограничения модели RGB, а динамический диапазон изображения серьезно увеличится. Но затем любое HDR изображение можно вывести на любом средстве отображения (том же RGB мониторе), с максимально возможным качеством для него при помощи специальных алгоритмов tone mapping .

HDR рендеринг позволяет изменять экспозицию уже после того, как мы отрендерили изображение. Дает возможность имитировать эффект адаптации человеческого зрения (перемещение из ярких открытых пространств в темные помещения и наоборот), позволяет выполнять физически правильное освещение, а также является унифицированным решением для применения эффектов постобработки (glare, flares, bloom, motion blur). Алгоритмы обработки изображения, цветокоррекцию, гамма-коррекцию, motion blur, bloom и другие методы постобработки качественней выполнять в HDR представлении.
Современная терминология 3D графики

В приложениях 3D рендеринга реального времени (играх, в основном) HDR рендеринг начали использовать не так давно, ведь это требует вычислений и поддержки render target в форматах с плавающей точкой, которые впервые стали доступны только на видеочипах с поддержкой DirectX 9. Обычный путь HDR рендеринга в играх таков: рендеринг сцены в буфер формата с плавающей точкой, постобработка изображения в расширенном цветовом диапазоне (изменение контраста и яркости, цветового баланса, эффекты glare и motion blur, lens flare и подобные), применение tone mapping для вывода итоговой HDR картинки на LDR устройство отображения. Иногда используются карты среды (environment maps) в HDR форматах, для статических отражений на объектах, весьма интересны применения HDR в имитации динамических преломлений и отражений, для этого также могут использоваться динамические карты в форматах с плавающей точкой. К этому можно добавить еще лайтмапы (light maps), заранее рассчитанные и сохраненные в HDR формате. Многое из перечисленного сделано, например, в Half-Life 2: Lost Coast.
Современная терминология 3D графики

HDR рендеринг очень полезен для комплексной постобработки более высокого качества, по сравнению с обычными методами. Тот же bloom будет выглядеть реалистичнее при расчетах в HDR модели представления. Например, как это сделано в игре Far Cry от Crytek, там используются стандартные методы HDR рендеринга: применение bloom фильтров, представленные Kawase и tone mapping оператор Reinhard.
Современная терминология 3D графики

К сожалению, в некоторых случаях разработчики игр могут скрывать под названием HDR просто фильтр bloom, рассчитываемый в обычном LDR диапазоне. И хотя большая часть в том, что сейчас делают в играх с HDR рендерингом, как раз и есть bloom лучшего качества, выгода от HDR рендеринга не ограничивается одним этим постэффектом, просто его сделать легче всего.

Tone Mapping


Tone mapping - это процесс преобразования диапазона яркостей HDR к LDR диапазону, отображаемому устройством вывода, например, монитором или принтером, так как вывод HDR изображений на них потребует преобразования динамического диапазона и цветового охвата модели HDR в соответствующий динамический диапазон LDR, чаще всего модель RGB. Ведь диапазон яркости, представленный в HDR, очень широк, это несколько порядков абсолютного динамического диапазона единовременно, в одной сцене. А диапазон, который можно воспроизвести на привычных устройствах вывода (мониторах, телевизорах), составляет лишь около двух порядков динамического диапазона.

Преобразование из HDR в LDR и называется tone mapping, оно выполняется с потерями и имитирует свойства человеческого зрения. Такие алгоритмы принято называть операторами tone mapping. Операторы разделяют все значения яркости изображения на три разных типа: с темной, средней и яркой освещенностью. На основе оценки яркости средних тонов, корректируется общая освещенность, значения яркости пикселей сцены перераспределяются для того, чтобы войти в выходной диапазон, темные пиксели осветляются, а светлые затемняются. Затем, наиболее яркие пиксели изображения приводятся к диапазону устройства вывода или выходной модели представления. На следующей картинке изображено самое простое приведение HDR изображения к LDR диапазону, линейное преобразование, а к фрагменту в центре применен более сложный оператор tone mapping, работающий так, как было описано выше:
Современная терминология 3D графики

Видно, что только с применением нелинейного tone mapping можно получить максимум деталей в изображении, а если приводить HDR к LDR линейно, то многие мелочи просто теряются. Единственно правильного алгоритма tone mapping нет, существует несколько операторов, дающих хорошие результаты в разных ситуациях.
Совместно с HDR рендерингом, с недавнего времени tone mapping начали применять в играх. Стало возможным опционально имитировать свойства человеческого зрения: потерю остроты в темных сценах, адаптацию к новым условиям освещения при переходах от очень ярких областей к темным и наоборот, чувствительность к изменению контраста, цвета... Вот так выглядит имитация способности зрения к адаптации в игре Far Cry. Первый скриншот показывает изображение, которое видит игрок, только что повернувшийся от темного помещения к ярко освещенному открытому пространству, а второй - то же изображение через пару секунд, после адаптации.
Современная терминология 3D графики

Современная терминология 3D графики


Bloom


Bloom - это один из кинематографических эффектов постобработки, при помощи которого наиболее яркие участки изображения делаются еще более яркими. Это эффект очень яркого света, проявляющийся в виде свечения вокруг ярких поверхностей, после применения bloom фильтра такие поверхности не просто получают дополнительную яркость, свет от них (ореол) частично воздействует и на более темные области, соседствующие с яркими поверхностями в кадре. Проще всего показать это на примере:
Современная терминология 3D графики

В 3D графике Bloom фильтр делается при помощи дополнительной постобработки - смешивания смазанного фильтром blur кадра (всего кадра или отдельных ярких его областей, фильтр обычно применяется несколько раз) и исходного кадра. Один из наиболее часто применяемых в играх и других приложениях реального времени алгоритм постфильтра bloom:
Сцена рендерится во фреймбуфер, интенсивность свечения (glow) объектов записывается в альфа-канал буфера.
Фреймбуфер копируется в специальную текстуру для обработки.
Разрешение текстуры уменьшается, например, в 4 раза.
К изображению несколько раз применяются фильтры сглаживания (blur), на основе данных об интенсивности, записанных в альфа-канал.
Полученное изображение смешивается с оригинальным кадром во фреймбуфере, и результат выводится на экран.

Как и другие виды постобработки, bloom лучше применять при рендеринге в широком динамическом диапазоне (HDR). Вотпример обработки конечного изображения bloom фильтром из 3D приложений реального времени:
Современная терминология 3D графики


Motion Blur


Смазывание в движении (motion blur) происходит при фото- и киносъемке из-за движения объектов в кадре в течение времени экспозиции кадра, в то время, когда затвор объектива открыт. Снятый камерой (фото, кино) кадр не показывает снимок, снятый мгновенно, с нулевой длительностью. Из-за технологических ограничений кадр показывает некоторый промежуток времени, за это время объекты в кадре могут совершить перемещение на определенное расстояние, и если так происходит, то все положения движущегося объекта за время открытого затвора объектива будут представлены на кадре в виде смазанного изображения по вектору движения. Так происходит, если объект перемещается относительно камеры или камера относительно объекта, и величина смазывания дает нам представление о величине скорости движения объекта.

В трехмерной же анимации, в каждый конкретный момент времени (кадр) объекты расположены по определенным координатам в трехмерном пространстве, аналогично виртуальной камере с бесконечно быстрой выдержкой. В результате, смазывание, подобное получаемому камерой и человеческим глазом при взгляде на быстро движущиеся объекты, отсутствует. Это выглядит неестественно и нереалистично. Рассмотрим простой пример: несколько сфер вращаются вокруг некоей оси. Вот изображение того, как это движение будет выглядеть со смазыванием и без него:
Современная терминология 3D графики
 
unka
1
 
Alexandrus
1:07:45 05.01.13
Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
#1
 
dVDKING
24-06-2009 14:09
 
Гости
0
5

#2
 
(nok)
24-06-2009 14:18
 
1
 
206
 
Старожилы S.F.W.
0
5
__________________________________________
Подпизь.

#3
24-06-2009 14:32
 
15
 
1981
 
Старожилы S.F.W.
0
agree
__________________________________________
Крестный отец просил передать свой привет shoot

#4
24-06-2009 14:44
 
293
 
3304
 
Журналюги
0
bravo
__________________________________________

#5
24-06-2009 14:45
 
Гости
0
bellow

#6
 
ZippeR
24-06-2009 14:50
 
248
 
5006
 
Администрация
0
5
__________________________________________
Господа, тщетно бытие

#7
 
KpeBeg
24-06-2009 14:50
 
17
 
3036
 
Старожилы S.F.W.
0
Кто не знал-тот будет знать agree
__________________________________________

#8
24-06-2009 15:00
 
109
 
5122
 
Журналюги
0
в мемориз
__________________________________________

#9
 
vlad
24-06-2009 15:09
 
8
 
161
 
Старожилы S.F.W.
0
Да, познавательно! 5

#10
 
ADD
24-06-2009 15:13
 
307
 
6808
 
Старожилы S.F.W.
0
huyase ПОЗНАВАТЕЛЬНО bravo
__________________________________________





#11
 
LeXmaR
24-06-2009 15:15
 
636
 
13133
 
Редакторы
0
Дохуя букав, сразу не прочту, но про шейдеры спасибо, про бдум знал немного. 5

Статейка староватая, года так 2005
__________________________________________
То, каким человеком ты станешь через пять лет, определят два основных фактора: люди, с которыми ты общаешься, и книги, которые ты читаешь.

(с) Робин Шарма

#12
 
Johnson
24-06-2009 15:19
 
42
 
1071
 
Старожилы S.F.W.
0
Цитата: LeXmaR
Статейка староватая, года так 2005

Да эт не важно, с тех пор ничего особо нового не придумали lol

#13
 
INVADER
24-06-2009 15:43
 
4
 
5547
 
Старожилы S.F.W.
0
5

#14
 
Artful
24-06-2009 15:58
 
226
 
13089
 
Журналюги
0
5

#15
 
Gotham
24-06-2009 16:03
 
1945
 
Старожилы S.F.W.
0
60% так точно знал,короче адназначна 5 ahuel
__________________________________________

#16
 
KrAB
24-06-2009 16:09
 
10
 
1283
 
Пиздоболы
0
Ниасилил 5

#17
 
Shandow
24-06-2009 16:13
 
21
 
484
 
Старожилы S.F.W.
0
5 очень мало букф thumbsup
__________________________________________

#18
 
kemer
24-06-2009 16:13
 
1266
 
Старожилы S.F.W.
0
5

#19
 
LeXmaR
24-06-2009 16:31
 
636
 
13133
 
Редакторы
0
Johnson,
Есть новинки, но про них ничего не сказано, ведь в DX10 и Shader Model 4 включен ряд навовведений или улучшений. Но впринципе все основные еффекты сдесь опписаны!
__________________________________________
То, каким человеком ты станешь через пять лет, определят два основных фактора: люди, с которыми ты общаешься, и книги, которые ты читаешь.

(с) Робин Шарма

#20
 
Johnson
24-06-2009 16:48
 
42
 
1071
 
Старожилы S.F.W.
0
LeXmaR,
yes

#21
24-06-2009 16:54
 
Гости
0
Было уже.

#22
 
ShadOR
24-06-2009 17:27
 
Гости
0
Просто охерезная статья!

#23
24-06-2009 17:39
 
Гости
0
5

#24
 
Ollen
24-06-2009 17:58
 
Гости
0
5

#25
 
Justt
24-06-2009 18:36
 
44
 
1671
 
Старожилы S.F.W.
0
5
__________________________________________
— И вот когда вы в двух шагах
От груды сказочных богатств
Шанс говорит вам-Бог подаст...
Хитрый шанс!

#26
 
Kraaton
24-06-2009 19:06
 
2
 
576
 
Старожилы S.F.W.
0
5 bravo
__________________________________________
Проц:AMD Phenom(tm) II X4 965 Processor 3.4GHz
ОЗУ:8 GB
Видео:GeForce GTX 560 1gb
ХДД: 300gb
Моник: Samsung SyncMaster T220
Windows 7 Ultimate SP1 64-bit

#27
 
dubishe
24-06-2009 20:36
 
Гости
0
Ай малацца 5

#28
 
Manson
24-06-2009 20:50
 
Гости
0
ты охуенен! могу выложить простой солюшин на OpenGL
Кому интересно пишите в ДС Ник тот же

#29
24-06-2009 22:22
 
5
 
2226
 
Старожилы S.F.W.
0
хм ) из этого знал уже давным давно процентов так 100-110% )))

#30
24-06-2009 22:35
 
Гости
0
5 , хорошая и весьма доступная статейка

#31
 
ierh
24-06-2009 23:41
 
91
 
5747
 
Старожилы S.F.W.
0
Содержательно.. 5
__________________________________________
...у двері з написом nirvana стукають..

foobar2000


#32
 
Budven
25-06-2009 00:14
 
Гости
0
Зачетненько radion

#33
 
VetoS
25-06-2009 00:27
 
1695
 
Старожилы S.F.W.
0
ahuel bravo
__________________________________________
Создание сайтов в Харькове

#34
 
Shunya
25-06-2009 01:20
 
9246
 
Старожилы S.F.W.
0
5
__________________________________________

#35
 
_nAyK_
25-06-2009 08:36
 
Гости
0
5 nice

#36
25-06-2009 09:25
 
1
 
363
 
Старожилы S.F.W.
0
5

#37
 
NoX
25-06-2009 11:48
 
8662
 
Старожилы S.F.W.
0
еба постарался .... 5
__________________________________________

#38
 
iddqd
25-06-2009 14:09
 
Гости
0
Не знаю кто старался, но все равно bravo 5

Информация
Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации.
наверх